THE KAKADU DUNNART, SMINTHOPSIS BINDI (MARSUPIALIA: DASYURIDAE), A NEW SPECIES FROM THE STONY WOODLANDS OF THE NORTHERN TERRITORY

S. VAN DYCK, J.C.Z. WOINARSKI AND A.J. PRESS

Van Dyck, S., Woinarski, J. C. Z. \&Press A.J. 19941201 : The Kakadu Dunnart, Sminthopsis bindi (Marsupialia: Dasyuridae), a new species from the stony woodlands of the Northem Territory, Memoirs of the Queensland Museam 37 (1):311-323. Brisbanc. ISSN 0079-8835.

Abstract

Sminthopsis bindi sp, nov, is described from the stony woodlands of the "Top End" of the Northern Territory, Australia. This small-sized species with striate apical granules on the unfused interdigital pads of the hindfeet, closely resembles S. archeri and S. bufleri. It is distinct, however, for its development of entoconids on the lower molars. Cladistic analysis suggests the affinities of S.bindi lie most closely with the S.archeri, S.butleri, S.virginiae, S.douglasi sub-clade. \square Sminthopsis bindi, dunnart, Kakadu National Park, Northern Territory dasyurid.

S. Van Dyck, Queensland Museum, P.O. Box 3300, South Brisbane, Queensland 4101, Australiai J.C.Z. Woinarski, CSIRO Wildlife and Ecology, PMB 44, Winnellie, Northem Territory 0821, Australia; A.J, Press, Australian Nature Conservation Agency, P.O. Box 1260, Darwin, Northem Territory 0801. Australia; 10 December 1994

The genus Sminthopsis represents one of the most successful and diverse extant groups of marsupials on the Australian continent. Radiation and speciation appear to have closely followed trends of increasing continental aridity and at least nineteen species are recognised (Maboney \& Ride, 1988) from habitats ranging from arid grasslands and deserts (Archer, 1981) to highland tropical rainforest (Van Dyck, 1985). In Papua New Guinea, where Sminthopsis is a recent invader, the genus is represented by two savannahadapted species S, virginiae and S. archeri.
One of these, S, virginae, was until recently, the only Sminthopsis recorded from the northern regions of the Northern Territory. However, on 25 October 1980, J.C. Wombey (CSIRO) collected a very young specimen of Sminthopsis (CM15587) in a pit trap set in open forest off the Arnhem Highway, west of Kapalga. The site was situated on an unnamed creek between the West Alligator River and Flying Fox Creek in Kakadu National Park, Northem Territory, The specimen was sent to John Calaby, (formerly of CSIRO. Canberta), who examined it and then sent it on to one of us (SVD) for comment. At the time it was coneluded that this specimen represented a juvenile of S. macroura, and the specimen was referred to as S. macroura in the literature (Braithwaite. 1985; Brooker \& Braithwaite, 1988). Later, having trapped an adult on the Mary River in November 1988, Woinarski et al. (1989a) commented on the dubious nature of the earlier S. macroura references, and chose instead to favour a possible S. butleri determination for
the Kapalga and Mary River specimens. During the following 1989 wet season, CSIRO staff trapped a further nine dunnarts from Plumtree Creek, Gerowie, Mi Evelyn and Snake Plain, all within Stage III of Kakadu National Park. In April 1989, on the basis of foot and dental morphology, the Mary River specimen was taxonomically appraised as an undescribed species and in October that year Woinarski et al. (1989b) noted the determination. Since then a small number of additional specimens has come to hand primarily through the Kakadu Stage III Fauna Survey, These specimens all confirm the early contention of Calaby that the Kapalga specimen represented a new species of dunnart, The species is described here as S. bindi and its close affinities with the S. archeri, S. butleri. S.virginiae, S, doutglasi group are discussed.

METHODS

Terminology of cranial, external and dental morphology follows Archer (1976a, 1981). Tooth number follows Luckett (1993). Some extra measurements follow Van Dyck (1986). The HENNIG ' 86 V1.5 programme (James S. Farris, 1988) was used to formulate the most parsimonous hypothesis of relationship between S. bindi and other species of the genus; mhennig* and bb (branch breaker) options were used on unweighted branches using default coding. Seventy-nine characters were used in the analysis (Tables 2,3), 17 pertained to the incisors, 5 to caniness 15 to premolars, 20 to molars, 8 to
cranium and 14 to external features. Polanity for many of these characters has been established in prior works such as Archer (1976b, 1981, 1982a, 1982b) and Kirsch \& Archer (1982). The coded characters were treated as ordered. This analysis produced a single, well-resolved cladogram of dunnart relationships with a consistency index of 0.41. Murexia longicaudata and Antechinus godmani were used as outgroup species. A climate profile (Table 5) was generated by the B1OCLIM prediction system (see Nix \& Switzer, 1991). Specimens mentioned here are lodged in the collections of the Queensland Museum (prefixed JM), Northem Territory Museum (U) and the Australian National Wildlife Collection, Division of Wildlife Research, Canberta (CM).

SYSTEMATICS

Sminthopsis bindi sp. nov,
(Figs 1, 2; Tables 1, 4)

Etymology

'Bindi' is the name for small dasyurids in the language of the Jawoyn people, traditional owners of the land from which most specimens have been recorded (Sandy Barruwei, Peter Jatbula and Nipper Cooper, as told to David Соорег).

Type Localtty

Eva Valley Station, Stage 3 Kakadu National Park, Northern Territory, $14^{\circ} 30^{\prime} \mathrm{S}, 132^{\circ} 45^{\prime} \mathrm{E}$.

Material Examined

HoLOTYPE: NTMU944, adult male. skull and dentaries, body in ethanol, 22 Feb 1991, J. Woinarski.
Paratypes: A total of seven (Table 1).

Diagnosis.

A small-sized species of Sminthopsis that differs from S. murina, S. dolichura, S. griseoventer. S. gilberti, S. aitkeni, S. ooldea, S. granulipes, S. psammophila, S. butleri, S. hirtipes, S. macroura, S. crassicaudata and S. youngsoni in having the apical granules of the non-fused interdigital pads of the very narrow hindfeet large, oval and striate. Differs from S. virginiae in being much smaller [mean basicranial length (BL) $=23.40 \mathrm{~mm}$ ($\mathrm{SD}=0.70, \mathrm{~N}=5, \mathrm{R}=22.95-24.40$) vs $\mathrm{BL}=27.06$ ($\mathrm{SD}=1.48, \mathrm{~N}=7, \mathrm{R}=24.95-29.19$), mean lower premolar row length $\left(\mathrm{P}_{1-3}\right)=3.00$ ($\mathrm{SD}=0.19 \mathrm{~N}=5$, $\mathrm{R}=2.88-3.30$) vs $\mathrm{P}_{1-3}=3.83$ ($\mathrm{SD}=0.16, \mathrm{~N}=7$, $R=3.67-4.11$), mean hind foot width $(\mathrm{HFW})=3.09(\mathrm{SD}=0.16, \mathrm{~N}=5, \mathrm{R}=2.94-3.31)$ vs $H F W=4.89$ ($\mathrm{SD}=0.36, \mathrm{~N}=12, \mathrm{R}=4.50-5.66)$],

FIG. 1. Sminthopsis bindi, skull and dentanes of holotype, NTMU944. Scale in mm.
lacking rufous cheeks and having less welldeveloped entoconids. Differs from S. Lungicaudata in having a tail that is less than twice the nose-vent length. Differs from S. douglasi in being much smaller (mean $\mathrm{BL}=23.40$ vs 28.90 ($\mathrm{SD}=3.11, \mathrm{R}=26.7-31.10, \mathrm{~N}=2$), mean $\mathrm{P}_{1-3}=3.00$ vs 4.02 ($\mathrm{SD}=0.30, \mathrm{R}=3.81-4.23, \mathrm{~N}=2$), mean HFW $=3.09$ vs $5.30(\mathrm{~N}=1)$], lacking an incrassated tail, and having less well-developed entoconids. Differs from S. leucopus and S. archeri in possessing entoconids on M1.3. Differs from Antechinomys laniger in lacking terminal brush on tail.

Description

This diminutive, broad-faced dunnart (Fig. 2) is characterised by sandy dorsal tonings, white belly, shor-haired non-incrassated tail and distinctive eye-rings. There is little variation in the depth of tonings of specimens.

Holotype: Pelage. Colours (after Ridgway, 1912) forholotype are as follows; fur of mid-back (7 mm long) with basal 4 mm Slate Color, median 2.5 mm Chamois, apical 0.5 mm black. Back appears

TABLE 1, Paratypes.

Reg. No.	Age	Sex	Localily	Calleathon dite	Collector	Preservation
NTMU716	Adull	Male	El Sherama Plateau(Kikudu NP Slage 1111 $13^{\circ} 31^{\prime} 5$ $132^{\circ} 33^{\circ} \mathrm{E}$	1.8.90	A. Pisher	Spirit body. skull extructed
NTMU943	Juvenile	Male	$\begin{aligned} & \text { Eva Valley } \\ & 14^{\circ} 30.5 \mathrm{~S} \\ & 132^{\circ} 49^{\circ} \mathrm{E} \end{aligned}$	2.2.91	J. Woinarski	Spiril
NTMU945	Juvenile	Male	$\begin{aligned} & \text { Sruart Highway } \\ & 12^{2} 511^{\prime} \mathrm{S} \\ & 131^{\circ} 08^{\prime} \mathrm{E} \\ & \hline \end{aligned}$	4.11 .90	R. Chath	Spirit
NTMU946	Adult	Male	Amhem Highway $123^{\circ} \mathrm{S}$ $131^{*} 40^{\circ} \mathrm{E}$	21.10 .90	R. Chato	Spirit
NTMU954	Subadull	Femate	Roper Valley Slation $14^{\prime \prime} 55^{\prime} \mathrm{S}$ $133^{\circ} 54^{\prime} \mathrm{E}$	27.5.91	J. Wounarski	Spirit
CM15587	3 uvenile	Male	West of Kapaly $12^{\circ} 46^{\circ} \mathrm{S}$ $132^{\circ} 15^{\circ} \mathrm{E}$	25.10 .80	IC. Wombey	Puppet skin, skull extracted
QMJM10121	Adult	Male	James Mine. Adil M1 Todd area 1407'S J $32^{\circ} 08^{\circ} \mathrm{E}$	8.12.89	M. Schulz	Spirit

Olive-Buff. How. ever, the dark pigmentation of the tatil scales gives the over. all impression of a tail coloured Bulfy Brown dorsally and Vinaceous-Buff ventrally.

Vibrissae. Approximately 25 mystacial vibrissae occur on each side and are. up to 21 mm long. More dorsal mystacial vibrissae are coloured Fuscous Black while those more ventral are colourless; supraorbi. tal vibrissae (Fuscous Black) number 2 (right) and 1 (left): genals (Fuscous Black and colouricss)
overall Citrine-Drab. Medially-thickened Fuscous Black spines (guard hairs) interspersed thinly through the fur 8 mm long on the rump and redaced to 5.5 mm where they terminate at the crown of the head. Fur on and below the shoulders, thighs, flanks and chin lacks black tips or coarse guard hairs and these areas and the belly appear Dark Olive-Buff.
Holotype lacks distinct head-stripe, but light areas immediately above each eye-ring leave the impression of a dark head "patch". A distinet eye-ring results firtly from an intense darkening of the eyelid skin (similar in intensity to the dark pigmentation of the scrotal skin) and secondly from the dark hairs which surround the eye. A narrow band of short, black, eyelash-hairs completely encircles the eye. Fur immediately under the cye is off-white (Pale Olive-Buff) giving the impression of white cheeks. The soft ventral fur (4.5 mm long on belly and 4 mm long on interramal region) is white and is interspersed by white medially-thickened spines up to 7 mm long. Belly is overall white. Forefeet thinly covered with short white hairs. Hindfeet more thickly covered with short white hairs. Tail weakly bicoloured with hairs averaging 1.0 mm along its length and increasing to 2.2 mm at its tip. Dorsally, hairs of tail uniform Pale Olive-Buff with Buffy Brown to Fuscous Black tips. Ventrally. black tips lost completely and hairs are Pale

9 (left): ulna-cappals (colourless) number 2 (lcft) and 2 (right); submentals (colourless) number 4.

Tail. Tail longer than nose-vent length. Thirn and tapers toward tip.

Hindfoot. Vcry narrow. Interdigital pinds separate. Apical granule enlarged, elongate and striate. Small hallucal granules present. No metatarsal granules present. Hair on foot cowers heel and extends diagonally across foot. Terminal pads of digits also striate (Fig. 3).

Ears. Ears large with curled external edge on supratragus. Fawn hairs on postervintemal und ventral margins of pinnae.

Dentition. (Figs 1, 4). Upper incisurs: I' narrow, peg-like, non-procumbent and relatively uncurved, taller-crowned than all upper incison amd separated by diastema from \mathbb{I}^{2}. Left and right $\|^{\prime}$ worm and very widely separated. For $1^{1^{-4}}$ overall crown size $\left[^{4}=1^{3}>1^{2}\right.$. 1^{2} and 1^{3} have very weak buccal cingula. There is no lack of differentiation between root and crown. I^{4} carries a very wak anterior and posterior cusp . Roots of 1^{4} narrow.
Upper canines: C^{l} slender, short and caniniform with indistinct boundary between root and crown. No buccal cingulum, no lingual cingulum. Minute anterior cusp present as well as minute postcrior cusp.

Upper premolars: Minule gaps between C^{1} and p^{\prime}, P^{\prime} and P^{2}, P^{2} and P^{3}. All upper premolars carty

FIG. 2. Adult female and young Sminthopsis bindi. (Photo: Martin Armstrong)
weak buecal cingula. P^{2} and P^{3} carry weak lingual cingula. Crown height of $\mathrm{P}^{1}<\mathrm{P}^{2}<\mathrm{P}^{3}$. Minute but clearly-defined antcrior and posterior cingular cusps on P^{1}, P^{2} and P^{3}. P^{3} exhibits a slight postero-lingual lobe.

Upper molars: Postcrior tip of P^{3} near parastylar corner of M^{1} but lingual to and below stylar cusp A. Anterior cingulum of M^{1} below stylar cusp B short, broad and complete. Stylar cusp B and paracone relatively unworn and no protoconule present at base of paracone apex. Small bulge of enamel on face of anterior protocrista. Paracone on M^{1} approximately one third height of metacone. Stylarcusps C and E not visible on either LM^{1} or RM^{1} 。 M^{1} lacks posterior cingulum.

In M^{2} very narrow incomplete anterior cingulum, which contacts metastylar eorner of M^{1}, tapers quickly along basc of paracrista and degenerates well labially to base of paracone apex. Protoconule absent. M^{2} lacks stylar cusps A, C and E. Stylar cusp D spinous and narrow and there is no posterior cingulum.
In M^{3} anterior cingulum greatly reduced and narrower than in M^{2}, becomes indistinct after covering half the distance between stylar cusp B and base of paracone. No evidence of anterior
cingulum at base of paraconc and no protoconule or cnamel bulge. Stylar cusp D reduced to very small, blunt peak. Stylar cusp E a minute point. but stylar cusp C absent.

In Icft M^{4} antcrior cingulum narrow and terminates half way bctween stylar cusp B and base of paracone. Posterior cingulum is absent. Protocone reduced, short and relatively narrow. In occlusal view anglc made between postprotocrista and lingual profile of enamel below metastylar comer close to 120°. Right M^{+} deformed and amorphous posterior to paracrista.

Lower incisors: Crown height in first lower incisor greater than crown height in $\mathrm{J}_{2} . \mathrm{I}_{1}$ and I_{2} oval in anterolaterial vicw and gouge-like in occlusal view. I greater in crown height than I_{3}. I 3 slightly premolariform in lateral view with small posterior cusp at base of crest which descends posteriorly from apex of primary cusp. Lower canine rests against this posterior cusp. In occlusal view, a small notch separates postcrior cusp from posterolingual lobe and crown enamel of primary and posterior cusps folds noticeable lingually such that the crest of the two cusps bisects tooth longitudinally.

Lower canines: C_{l} caniniform and characterised by forward, incisor-like projection and

FIG. 3. Left hindfoot of Sminthopsis bindi holotype , NTMU944.
minimal curvature from root to crown tip. It has weak buccal and stronger lingual cingula and a very small posterior cusp.
Lower premolars: P_{1} close to C_{1}. All premolars close but not touching. All weakly cingulated buccally and very weakly lingually. For crown height and length $P_{3}>P_{2}>P_{1}$. All premolars narrow and elongate. All possess posterior cusps, and minute anterior cusps. Bulk of each premolar
mass concentrated anteriorly to line drawn transversely through middle of the two premolar roots.
Lower molars (Fig.4): All molars narrow. M_{1} talonid wider than trigonid and anterior cingulum very poorly developed. It terminates at posterior base of protoconid. No buccal cingulum. Low narrow paraconid appears in occlusal view as small blunt spur, lingual edge of which makes a

FlG. 4. Molar row of left dentary showing development of entoconids, holotype, NTMU9.4.4.

FJG. 5. The most parsimonous cladogram of 17 species of extant Sminthopsis (sensu Archer, 1982) when the outgroup contained A. godmani and M. longicandata.
[Characters supporting the nodes in Fig. 5 are as follows (interpret character numbers from Table 2):
Node 1: non-homoplasious forward changes - 16(3), 19(1), 28(2), 36(2), 53(3), 54(1),56(1), 62(1),63(2), 79(2); homoplasious forward changes - 30(2) also at nodes 6, 9, 12, and in M. lungicaudata, A. kmiger and S. hirtipes, 32(4) alsn at nodes 8 and 13 and in M. longictuduta, S. granulipes and A. laniger, $70(1)$ also at nodes $2,6,9,10,11,14$, 16 and in S. bulleri, S. ooldea, A. Leniger and S. hirtipes.
Node 2: non-homoplasious forwand changes - 58(1); homoplasious forward changes - 23(1) also in A. godmani, S. archeri, S. douglasi, S. psarnmophila, S. ooldea, A. laniger and S. youngsoni, 25 (1) also at nodes 5,13 and in A. godmani, S. burleri, S. douglasi and S. Iongicaulata, $42(1)$ also at node 15 and in A. godmani, S. murina, S. gramulipes, S. psammophila, S, ooldea, $70(2)$ idso at nodes $1,6,9,10,11,14,16$ and in S. bulleri, S. ooldea, A. laniger and S. liitipes; non-homoplasious reversals - 1(0).
Node 3: homoplasious forward changes - 41(1)also at nodes 5, 11, 16 and in S. psammophila, 45(1) also at node 16 and in S. archeri, S. virginiae and S. oaldea, $58(2)$ also at nodes 2, 4, 5, 6 and in S. bulleri, S. virginiae, S. granulipes, S. psammophila, S. longicaudata. A. laniger and S. hirtipes; homoplasious reversals - 5(0) also at nodes 8, 11 and in M. longicaudara. A. godmani, S. douglasi, S. ooldea, A. laniger and S.hirtipes.
Node 4: non-homoplasious forward changes - 58(3); homoplasious forward changes -47(1) also in S. ooldea, 59(1) also at nodes 5. 14 and in M. longicoudera, S. leucopus, S. macroura, S. buleri, S. longicaudata and S. hirtipes. Node 5: homoplasious forward changes - 4(2) also at nodes 11.15 and in M. longiraudata, S. murina, S.douglasi and S. gramilipes, $59(2)$ also at nodes 4 and 14 and in M. longicaudata. S. lencopus, S. macroura, S. bulleri, S. longicaudala and S. hirtipes; homoplasious reversals - $2(0)$ also at node 9 and in M. longitaudata, S. donglasi, S. granulipes, S. psammophila, S. crassicuudua, S. ooldea, S. hirtipes and S. youngsoni, 25(0) also at nodes 2, 13 and in A. godmani, S. bulleri, S. donglasi and S. longicaudatu, $41(0)$ also at nodes $3,11,16$ and in S. psammophila.
Node 6: homoplasious forward changes - 24(1) also in S. youngsoni, 30(3) also at node 1, 9, 12, and in M. longicaudata, A. laniger and S. hirtipes, 52(1) also at nodes 9, 12,16 and in S. psammophila, 58(5) also at nodes 2, 4, 5, and in S. buleri, S. virginiae, S. granulipes, S. psammophila, S. longicaudata, A. laniger and S. hirtipes; homoplasious reversals - $8(0)$ also at nodes 11,13 and in S. virginiae, S. granulipes, S. longicaudata, and S. voungsomi, $70(1)$ also at nodes $1,2,9,10,11,14,16$ and in S. buleri, S. ooldea, A. laniger and S. hirripes.
Node 7: homoplasious reversals - 19(0) also occurs at nodes 11,15 and in S. griseoventer and S. ooldea, 43(0) also occurs at node 12 and in M. longicaudata, S. murina, S. douglasi, S. ooldea, and S.longicaudata.

Node 8: homoplasious forward changes - 5(1) also at nodes 3, 8, 11 and in M. longicaudata, A. godmani, S. douglasi, S. ooldea, A. laniger and S, hirtipes, 59(4) also at nodes 4, 5, 14 and in M. longicaudata, S. leucopus, S. macroura, S. butleri, S. longicaudaro and S. hirtipes; homoplasious reversals - $32(3)$ also at nodes 1, 8, 13 and in M. longicaudata, S. granulipes and A. Laniger, $79(1)$ also at node 1 and in M. longicaudata, S, psammophila, S. ooldea, A. Laniger and S. youngsoni; non-homoplasious reversals $16(2)$ also at nodes 1 and 15 and in M. longicaudata, S, douglasi and S, ooldea,
Node 9: non-homoplasious forward change $-21(2)$ also at node 10 and in M. longicuudata, S. ooldea, and S. youngsoni, homoplasious forward changes - 1(1) also at node 2 and in S. douglasi, $\$$ g grarudipes, and S. hirtipes, 2(1) also at node S, and in M. longicaudata, S, douglasi, S, granulipes, S. psammophila, S. crassicaudara, S. ooldea, S, hirtipes and S, youngsoni, 9(1) also in S. douglasi. and S. psammophila, homoplasious reversals $30(2)$ also at nodes 1,6 and 12 and in M. longicaudata, A. laniger and S. hirtiper, $52(0)$ also at nodes $6,12,16$ and in S. psammophila, $54(0)$ also at nodes $L_{1} 13$ and in S. lewcopus, S. murina, S. archeri, S bulleri and S. crassicaudata, $70(0)$ also at nodes $1,2,6,10,11,14,16$ and in S. butheri, S. aoddea, A. Laniger and S, hirtipes. Node 10: non-bomoplasious forward change - $70(1)$ also at nodes $1,2,6,9,11,14,16$ and in S. butleri. S. oodea, A. laniger and S. hirripes; homoplasious roversal - $21(0)$ also at node 9 and in M. longicaudria, S. oolded, and S. yourgsoni.

Node 11 ; non-homoplasious forward change - 7(2), 48(2) and 70(4); homoplaslous fonward changes - $4(2)$ also at node 5 and in M. longicaudata, S. mwrina, S, douglasi and S, granulipes, S(4) also at nodes 3, 8 and in M, longicaudaia, A. godmani, S. douglasi, S. ooldea, A. laniger and S. hirtipes, 8(3) occums also at nodes 6,13 and in S. virginiae, S, granulipes, S. longicaudata, and S, youngsonii, 22 (7) also at node 15 and in M. longicaudaria, S. granulipes and S. Iongicaudata, 41(1) also at nodes 3,5,16 and in S. pspminophila; homoplasions reversals - $18(0)$ also at node 15 and in M. Longicaudata. S. douglasi and S. hirtiger, $19(0)$ also at nodes $1,7,15$ and in S. griseoventer and S, ooldea, $35(1)$ also in M. langicawitata and S. Jongicawdaia, 44(0) also in M. Longicaudata, S. macroura, S, bindi, S, douglasi, S.ooldea, A. laniger and S. yowngsoni.

Node 12: homoplasious forward changes - $20(1)$ also at node 15 and in A. godmani, S. griseoventer, S. archeri and S. hirtipes, 30(3) also at nodes 1, 6, 9 and in M. longlcaudana, A. laniger and S. hirripes, $52(1)$ also at nodes 6,9, 16 and in S. psammoptila, 68 (1) also atnode 15 and in S. douglasi and S. granulipes; homoplasious reversal $-43(0)$ also at node 7 , and in M. Longicaudato, S, murina, S, douglasi, S, aoldea, and S, longicaudata.
Node 13: homoplasious forward changes - 17(1) also at node 15 and in A. godmani, S. griseoventer, S. bindi, S. urcheri, S. douglasi and S. youngsoni, 32 (S)also al nodes 7 and 8 and in M. Longicaudata, S. grarulipes and A. laniger, $54(2)$ also at nodes 1 and 9 and in S. leucopas, S, murina, S. archeri, S. butleri and S. crassicaudara: homoplasious reversals - $8(0)$ also at nodes 6 and 11 and in S, viryiniae, S, granulipes, S. longicaudata, and S youngsoni, 25(0) also at nodes $2,5,13$ and in A. godmani, S. burleri, S. douglasi and S. Iongicaudata.
Node 14: non-homoplasious forward change - 70(5): homoplasious forward changes 58(1) also al node 5 and in M. longicaudala, S. leucopus, S. macrowra, S. budleri, S. longicaudaia and S, hirsipes, 64(2) atso at node 15 and in M. longicaudata and S. psammophila
Node 15: non-homoplasious forward changes - 17(3), 18(3), 19(4), 20(2), 64(2), 65(2); homoplasious forward changes $-4(2)$ also at nodes $S, 11$ and in M. longicaadata, S. murina, S.doaglasi and S. granulipes, 16(4)also at nodes 1 and 8 and in M. longicumbata, S. douglasi, S. granulipes and S.ooldea, 22(1) also at node 11 and in M. longicaudara, S.granulipes and S. Longicaudata, $69(1)$ also in S psammophila; homoplasious reversals - 42(0) also at node 2 and in A. godmani, S. murina, S. granufipes, S. pammophila, S. ooldea, 67(0) also in M. longicaudara, S. grannlipes, S. psammophita, S. crassicaudara and S. youngsoni, $68(0)$ also at bodc 12 and in S. douglasi and S, granulipes.
Node 16:non-homoplasious forward change - $70(7)$ also at nodes $1,2,6,9,10,11,14$, and in S, butleri, S. oofden, A. laniger and S. hirtipes; homoplasious forward changes -41(2) also at nodes 3.5, 11, and in S. psarnmophila, $4 S(7)$ also in S. archeri and S, ooldea; homoplasious reversals - $52(0)$ also at nodes 6,9 , and 12 and in S. рзанриорhila].
slight swelling on endoloph of M_{I}. Metacristid roughly oblique to long axis of dentary while hypocristid perpendicular, Cristid obliqua very short and extends from hypoconid to posterior wall of trigonid intersecting trigonid at point directly below tip of protoconid. Hypocristid terminates two-thirds way between hypoconid and metastylid. Small entoconid. From base of metaconid posteriorly, talonid endoloph takes a more lingual orientation under the influence of the entoconid.

In M_{2}, trigonid slightly narrower than talonid. Anterior cingulum poorly developed and terminating lingually in weak parastylid notch into which hypoconulid of M_{I} is tucked. No buccal cingulum. Narrow, weak posterior cingulum extends from hypoconulid to posterior base of hypoconid. Well-developed paraconid is smallest trigonid cusp. Metastylid minute, entoconid small but moderately well developed. Cristid obliqua extends from hypoconulid to posterior wall of trigonid, intersecting Irigonid at point slightly lingual to Jongitudinal vertical midline

TABLE 2. Character states (defined in derived state) used to resolve the affinities of S. bindi. Data used are a small subset of data including representatives from the following genera: Mamosa, Philarder, Antechinus, Phascogale, Myoictis, Dasyurus, Pseudantechinus, Parantechinus, Sarcophilus, Peroryctes, Isoodon and Myrmecobius, However the cladogram (Fig. 5) was based only upon taxa in Table 3. Character states are taken unchanged from those of the full data set, hence there are some discontinuities.

UPPER INCISORS

I, Incisors procumbeni: 0 , not procumbent; 1 , slightly procumt benc; 2 , more than $1 ; 3$, more than $2 ; 4$, procumbent.
2,1 crown relatively bulky with cingulum low: 0 , crown of 1 a thin spur, 1 , more bulky than $0 ; 2$, bulkier than $1 ; 3$, hulkier than $2 ; 4$, bulkier than $3 ; 5$, bulkier than $4 ; 6,1$ crown heavy.
3.1 laterally compressed, elongate: 0.1^{1} needle or peg-fike; 1, more compressed than 0; 2, more compressed than 1:3, more compressed than 2; 4, 1 spade-like.
4. R and LI separated by diastema; 0, touching: 1, narrowly spaced; 2 , wider than $4 ; 3$, wider than $2 ; 4$, widely spaced.
5.1 non-needle-like: 0.1^{1} needle-like, 1 , Jess needle-like than $0 ; 2$, less needle-like than $1 ; 3$, less needle-like tham $2 ; 4$, less needle-like than $3 ; 5$, less needle-likethan $4 ; 6$, less needlelike thay 5; 7, I spatulate or clup-shaped,
6. I^{1} and I^{2} juxaposed; 0,1 and I^{2} widely spaced; 1 , spacing less than $0 ; 2$, spacing less than $1 ; 3$, spacing less Jhan $2 ; 4$, spacing less than $3 ; 5,1$ and I^{2} crushed.
7. 1^{2-4} crowns broader than roots: 0 , crown-root width equal; 1, crown stightly broader: 2 , hroader than 1; 3 , broader than 2:4, broader than 3: 5, crown much broader than foot.
8. 1^{-4} lensate, clongate: $0 . \mathrm{I}^{2-4}$ peg-like: 1 more elongate thag $0 ; 2$, more than $1 ; 3$, more than $2 ; 4$, more than $3 ; 5,1^{2-4}$ jengate.
9. 1^{24} crowns broad (occlusal) and cusps folded lingually: 0 , crowns narrow and cusps minolded; 1, crowns broater and slightly folded; 2 , more than $1 ; 3$, more than $2 ; 4$, crowns broad and folded ${ }_{4}$
10. $I^{2} \geq 1^{3}>1^{4}: 0, I^{4}>I_{3}^{3} \geq 1^{2} ; 1,1^{4}=1^{3}=I^{2} ; 2,1^{2} \geq 1^{3}>1^{4} ; 3$, 11.1^{1-4} cingulated: 0, no cingulation ${ }^{-4} 1$, slight cingutation: 2 , migre than $1: 3$, abore than $2 ; 4,1^{\text {4 }}$ heavily clagulated.
12. 1^{4} with posterior cusp; Q no posterior cusp; 1 , posterior cusp present.
13. Tplal upper incjsors $=8: 0,10 ; 1,8$.
14. 11 greatly enlatged 0, no. 1 , yes.
15. 1 lower than I^{2-4}; , higher; 1 , lower.

UPPER CANINES

16. C^{C} short: $0, \mathrm{C}$ very long; 1 , shorter than $0 ; 2$, shorter than 1; 齐, shorter than 2;4, C short.
17. C root and crown clearly differentiated: 0 , no differentiation; 1 , differentiated; 2 , more than $1 ; 3$, more than 2; 4, more than 3.
18. C bulky, nun needle-like: 0, C^{1} geedle-like: 1, fess than 0; 2, less than 1;3, less than 2;4, C cone-shaped.
19. C non-caniniform: 0. C faniniform; 1, less than $0 ; 2$, less than 1; 3. less than 2; 4. C premolariform.
20. C with posterior cusp: 0 , cusp absent; 1. stmall cusp present: 2, cusp largeritian 1.

UPPER PREMOLARS
21. P eircular in ocelusal: $0, p^{1}$ elongate; j, more rounded than $0 ; 2$, more rounded that 1;3, more rounded than 2
$22 . \mathrm{P}^{\dagger}$ extremely lensate: $0, \mathrm{P}$ rooderately parrow; 1 , mone elongate thyn $0 ; 2$, more elongate than $1 ; 3$, more elongate than $2 ; 4, \mathrm{~F}$ very narrow and lensate.
23. P aud P^{2} touching or crushed, 0 . wide space between P^{\prime} and $P^{2}, 1$, small space between P and $P^{2}: 2, P^{2}$ and P^{2} losects or crushed.

```
\(24 . \mathrm{P}^{1}\) and \(\mathrm{P}^{2}\) with lingual lobing: 0 , no lobing: 1 , slight lobing: 2 , pronounced lobing.
25. \(\mathrm{P}^{3}\) with large posterior cusp: 0 , no cusp; 1,slight cusp; 2, pronounfed cusp or \(\mathrm{P}_{3}\) absent.
26. \(\mathrm{P}_{3}^{3}<\mathrm{P}^{2}: 0\), no \(\mathrm{P}^{2}<\mathrm{P}^{3} ; 1\), yes.
27. \(P^{3}\) with postero-lingual cusp: 0 , no; 1 , yes.
```

UPPER MOLARS
28. M^{1-3} narrow with incomplete anterior cingulum: $0, \mathrm{M}^{1-3}$ broad, cingulum complete; $I_{\mathrm{P}-\mathrm{M}^{-3}}$ narrow, cingulum incomplete or nearly so; $2, \mathrm{M}^{\mathrm{P}-3}$ Darrow, einguleme incomplete, molars very narrow; 3, molars greatly reduced.
29. $\mathrm{M}_{1 \text { - equal to }}$ or shorter than $\mathrm{M}^{3}: 0$, no: 1, yes.
$30 . \mathrm{M}^{1-3}$ protocone width greatly reduced: 0 , Protocone broad; 1, protocone narrower than 0; 2. narrower than 1, 3, narrower than $2 ; 4$, narrower than $3 ; 5$, protocone absent.
31. M^{I} stylar cusp B greatly reduced: 0 , no reduction; 1 . reduced: 2 , greatly redueed
32. M^{4} protecone reduced 0. protocone large 1, protocone slightly reduced; 2 , reduction ereater than 1, 3, reduetion greater than 2; 4, reduction greater than 3; 5, reduction greater than 4,6, reduction greanes hian 5; 7, reducion gregter than $6 ; 8$, protocone absent.
33. M^{4} preparacrista orients transversely to long axis of skull: 0 , orientation perpendicular to longitudinal: I, slightly transverse; 2, transverse.
34. $\mathrm{M}^{1, f}$ stylar cusp D very large: 0 , stylar cusp D absent; 1, larger than 0; 2, larger than $1 ; 3$, stylar cusp D very larg.
$35 . \mathrm{M}^{2}, \mathrm{M}^{3}$ ectoloph greatly indented: 0 , no; 1 , slight indent; 2. more than 1;3, greatly indented.
36. M^{4} meracone loss: 0 , metacone large; 1 , metacone more reduced than $0 ; 2$, more than $1 ; 3$, more than $2 ; 4$, metacone lost.
37. $\mathrm{M}_{\text {p }}^{\mathrm{x}}$ posterior cingulum absent: 0 , present: 1 , absent.
38. $\mathrm{M}^{2}, \mathrm{M}^{3}$ metaconule greatly developed: 0 , no; I , slight development; 2 , greatly developed.
39. M^{\top} paracone and stylar cusp B fused: 0 , no, widely separated; 1, approximated; 2, greater approximation than 1;3,tused.
40. Setylar cusp D on M^{3} heavily infolded: 0 , near perpendicular with ectoloph; 1, slightly infolded; 2, heavily infolded; 3 , merging with metacone.

LOWER INCISORS

41. I1. 12 prostrate: 0, 1f, 12 almost perpendicular to dentary axis; 1, more prostrate than $0 ; 2$, more prostrate than $1 ; 3$, I. 12 almost horizontal.
42. 13 heel barrower than II heel: 0,13 beel wider than heel of $1_{1} ; 1$, heels equal width; 2 , Is heel slightly narrower than heel of 11: 3, narrower than 2. 4, narrower than 3.

LOWER PREMOLARS

43. $\mathrm{P}_{3}<\mathrm{P}_{2}: 0, \mathrm{P}_{3}>\mathrm{P}_{2} ; 1, \mathrm{P}_{3} \leq \mathrm{P}_{2} ; 2, \mathrm{P}_{3} \ll \mathrm{P}_{2}$.
44. Lawer premolars crushed: 0, premolars widely spaced; 1 , nearly touching; 2 , slightly erushed; 3, more than 2:4, more than 3.
45, $\mathrm{P}_{1}, \mathrm{P}_{2}$ in contact: 0 , widely spaced; 1 , just conacting; 2 , crushed.

46, P_{3} broad or oriented transversely: $0, \mathrm{P}_{3}$ longitudinal to dentary axis; 1, P3 broad; 2, P3 transverse to dentary axis.
47. PI-3 circular in occlusal view 0 , premolars elongate view: 1, premolars oval; 2, premolars round 48. $\mathrm{P}_{2}, \mathrm{P}_{3}$ lenticular: 0 , elongate; 1 , narrower than $0 ; 2$, narrower than $1 ; 3$, lenticular,
49. P1, P2 with posterior lobing: 0, no lobing: 1, slight lobing: 2 , heavily lobed.
50. P3 single-rooted or absent: 0 , neither; 1 , yes, wne or both.

LOWER MOLARS

51. Mi paraconid poorly developed: 0 , paraconid well developed; 1, paraconid more reduced than 0;2, paraconidmore reduced than I
52. M3 talonid narrower than trigonid: 0, no, 1, yes.
53. M4 talonid with reduced cusp nomber: 0,3 cusps, well developed; 1, 3 cusps, poorly developed; 2,2 cusps; 3, 1 cusp; 4, loss of talonid.
54. M2 entoconid reduced: 0 , entocond rall, 1 , reduced: 2 , absent.
55. Mi paraconid absent: 0 , present; 1, absent.
56. M1-3 metacristids and hypocristids perpendicular to long axis of dentary: 0, transverse; 1, perpendicular.
57. M2, M3 hypoconid coalesced with entoconid: 0, no; 1, yos. CRANIAL FEATURES
58. Skull brachycephalic (ratio lachrymal breadth to length 1 -lachrymal canal): 0 , elongate; 1 , less elongate than $0 ; 2$, less elongate thin $1 ; 3$, less elongate than $2 ; 4$, less elongate than $3 ; 5$, less elongate than $4 ; 6$, less clongate than $5 ; 7$, skull brachycephalic.
59. Skull brachycephalic (ratio zygomatic width to basicranial length): 0 , elongate (<0.5690); 1, less elongate than 0 ($0.5691-0.5890$) ; 2, less elongate than 1 ($0.5897-0.6054$); 3 , less elongate than $2(0.6055-0.6300) ; 4$, brachycephatic (>0.6300).
60. Nasals non-fluted: 0 , fluted; 1 , less fluted than $0 ; 2$, less fluted than 1, 3, flat.
61. Skull flat not domed; 0 , domed; 1, less than $0 ; 2$, flat or concave.
drawn through tip of protoconid but well buccal to metacristid fissure. Hypocristid extends from slightly anterior and buccal to hypoconulid, to tip of hypoconid, From base of metaconid moving posteriorly, the endoloph takes a lingual orientation, then veers buccally to follow the line of the dentary until the base of the hypoconulid.
In M_{3}, trigonid wider than talonid. Prominent parastylid wraps around hypoconulid of M3; a strong anterior cingulum on M_{3}. Posterior cingulum as in M_{2} but more developed. Reduced cristid obliqua intersects trigonid at point well lingual to longitudinal vertical midline drawn through tip of protoconid, but slightly buecal to metacristid fissure. Entoconid on M_{3} as in M_{2} but less well developed. Endoloph on talonid of M3 follows line of dentary axis. Rest of M_{3} morphology as in M2.
In M4 trigonid much wider than talonid. Arterior cingulum stronger than in Mz. Posterior
62. Squamosal-frontal contact; 0, no, 1, yes.
63. Maxillary vacuities present: 0 , sbsent; I, present; 2, very large or with palatine vacuities.
64. Alisphenoid tympanic wing greatly expanded: 0 , small expansion: 1, slighrly inflated; 2, more inflated than 1; 3. greatly expanded.
65, Periotic wing of alisphenoid mastoid greatly expanded: 0 . slight expansion; 1, inflated; 2 , greatly expanded.

EXTERNAL FEATURES

66, Supratragus folded: 0, simple, 1, folded,
67. Tail short: 0 , longer than head-body; 1 , equal to head-body; 2 , shorter than head-body.
68. Tail incrassated: 0 , no, tail thin; 1 , yes or capacity to fatten 69. Tail extremely long: $0, ~ n o ; 1$, yes.
70. Hind foot interdigital pads: 0 , large apical granules strongly striated: 1, large apical granules weakly striated: 2 , large apical granulesclear; 3,small apical granules; 4, no enlarged apical granules; S, coalesced interdigitals, striated apical granules; 6, coaleseed interdigitals, unstrialed apical granules; 7, coalesced interdigitals, small apical granules and short hair cover; 8, coalesced interdigitals, small apical granules and long bair cover,
71. Loss of hallux: 0, no; 1, yes.
72. Hind foot heavily padded and striated post-hallecal granule: 0, no; 1, moderately; 2 , yes.
73. Claws very long: 0, no; 1, yes.
74. Body striped: 0 , no; 1, yes.
75. Hind feet syndactylous: 0, no; 1, yes.
76. Backward-opening pouch: $0, \mathrm{no}_{4}^{:} 1$, yes.
77. Tail with terminal brush: 0, no; 1 , yes.
78. Body size very large; 0 , small; 1 , medium; 2 , large; 3 , very large.
79. Body size very small: 0 , medium, I, smaller than 0,2, smaller than $1 ; 3$, very small.
cingulum absent, Of three main trigonid cusps, metaconid slightly taller than paraconid but both are dwarfed by protoconid. Hypoconid of MA talonid similar in size to M_{3}. Cristid obliqua forms low crest between hypoconid and base of metacristid, which intersects trigonid at point well lingual to melacristid fissure. Talonid crown enamel below cristid obliqua is reduced, resulting in talonid appearing (in occlusal yiew) as narrow oblique spur jutting off trigonid wall. Entoconid remnant visible
Skull (Fig. 1). Sminthopsis hindi is one of the 'broad-faced' dumarts (others include S, wirginiae, S. buteri, S. archeri, S. douglasi) which have a deep rostrum and broad zygomata giving the skull a brachycephalic appearance, Sagittal and nuchal crests poorly developed. Rostrum has longitudinal depression running along nasal sutures. Left and right alisphenoid tympanic wings of auditory bullae well developed and widely
separated. The foramen pseudovale large, open and not bisected by a bridge of alisphenoid. Eustachean canal opening large. Internal jugular canal foramina large; canals raised and prominent. Posterior lacerate foramina large and exposed, as are entocarotid foramina. Premaxillary vacuity extends from level of I^{2} root back to level of posterior edge of C^{1} root. Small maxillary vacuities extend from level of posterior root of P^{3} back to level of protocone root of M^{3}. Palatine vacuities extend from level of protocone root on M^{3}.

Variation in Paratypes

 In male CM15587 (juv) dP^{3} is molariform, 3 -rooted, with homologues of a protocone, paracone, metacone and stylar cusp \mathbf{B}. M^{4} is unerupted. dP_{3} is premolariform, 2-rooted, circular in occlusal view, and with buccal and lingual cingula. The entoconids on M_{2} and M_{3} are moderately well developed.In male NTMU716 the upper canines are premolariform and ectoloph indentation in M^{4} is pronounced. The apical granules on each interdigital pad of the hind feet appear worn and calloused and striation is indistinct.

FIG. 7. Disuribution of records of Sminthopsis bindi by 30' blocks (stars) along with BIOCLIM predictions (circles).

In adult male NTMU946 (a road-killed specimen) the head and body are badly squashed and the teeth show marked signs of decalcification.
The undeveloped pouch of subadult female NTMU954 shows 8 undeveloped nipples. The tail of this specimen is slightly thickened, giving the impression that it had the potential to incrassate.
The basicranium of adult male QMJM10121 is missing. Entoconids of the left dentary are low while those of the right are high and well developed. The right P_{2} is abnormally developed with a high posterior cusp and matching abnormal development of the posterolingual lobe.
While hallucal granules were present on the hindfeet of the holotype and all paratypes, no metatarsal granules were recorded. Their presence in dried skin CM15587 was impossible to determine. Most specimens showed enlargement of one or two granules adjacent to either distal or proximal extremity of the prominent striated apical granule on each interdigital pad.

TABLE 3. Distribution of characters states used to resolve the affinities of S. bindi. Characters are defined in the derived state.

Abbreviations: M. lo =M. longicaudata; A. go=A. godmani; S. ar=S. archeri, S. bi=S. bindi; S. bu=S. butleri; S. $c r=S$. crassicaudata; S. do $=S$. douglasi; S. gra $=$ S. granulipes; S. gri $=S$. griseovenler; S. hi $i=S$. hirtipes; $S . l e=S$. leucopus; S, lo $=$ S.longicaudata; $S, m a=S$, macroura; S. $m u=$ S. murina; $S, o o=S$, ooldea; $S, p s=S$. psammophila; S. vi=S, virginiae; $S . y o=S$. yourtgsoni; S. $l a=S$, (A.) laniger,

REPRODUCTION

Paratypes CM15587 (collected 25 Oct 1980), NTMU943 (22 Feb 1991) and NTMU945 (4 Nov 1990) were probably newly weaned juveniles. U954 had 8 minufe non-lactating nipples in a poorly developed pouch lined with long white hairs. No other substantial information is available for the species.

Distribution

All known records are from the Top End of the Northem Territory (Fig. 6), with more than half being from the $c .7000 \mathrm{~km}^{2}$ Stage III of Kakadu National Park. The distribution of records by 30^{\prime} blocks is shown in Fig. 7 along with that predicted by BIOCLIM based on sixteen climatic parameters (Table 5). The species is predicted to occur in much of eastern and southern Ambem Land, areas which have been subjected to remarkably little wildlife survey to date.

HaBitat

S. bindi has been recorded mainly from stony hills with woodland dominated by Eucalyptus dichromophloia, E. tintinnans (formerly E. alba in part), Es tectifica, and E. foelscheara, In the Kakadu

Stage III area, Sminthopsis bindi is closely associated with gravel or stony substrates on rolling foothills and supporting woodland dominated usually by the partly deciduous E. dichromophloia and E. fintinnans (Woinarski, 1992) (Fig. 8). These substrate and topographic associations are consistent for most records beyond Kakadu, how-

FIG. 8. Northern Territory distribution of Eucalyptus Iintinnansl E. dichromophloia woodland (solid) and E. dichromophloia woodlands (batched).

TABLE 4. Measurements for holotype (H) and paratypes of Sminthopsis bindi. Some abbreviations are as follows: BL basicranial length; ZW zygomatic width; 10 interorbital width (measured dorsally); R-LC ${ }^{1}$ width of mstrum outside right and left uppet canines; R-LM ${ }^{1}$ s width of skull from outside right and left upper first molars; R-LM ${ }^{1}$ m width of skull between right and left upper first molars; HB head-body length (tip of nose to cloaca); TV tail-vent length; HF(su) hind-foot length; $\mathrm{E}_{(\mathrm{n})}$ ear length; Wt weight in g. * measurement taken from spirit specimen.

Reg. No.	$\begin{aligned} & \text { Aged } \\ & \text { Sex } \end{aligned}$	BL	ZW	10	$\mathrm{R}_{\mathrm{C}} \mathrm{~L}$	$\begin{aligned} & \text { R-L } \\ & \text { M2s } \end{aligned}$	$\left\|\begin{array}{l} \mathrm{R}-\mathrm{L} \\ \mathrm{M} 2 \mathrm{~m} \end{array}\right\|$	I^{1}	Pl^{-3}	$\mathrm{M}^{1 / 4}$	$\begin{aligned} & \mathrm{I}_{1}- \\ & \mathrm{M}_{1} \end{aligned}$	$\mathrm{I}_{1}-$ cond	$\mathrm{P}_{1.3}$	MI_{4}	HB	TV	HF	E	Wt
$\begin{aligned} & \text { U944 } \\ & (\mathrm{H}) \end{aligned}$	AM	24.4	14.7	4.1	4.3	9.4	6.8	13.1	3.5	5.5	11.3	19.9	3.3	6.0	74*	105	16.7	17.3*	
U716	AM	22.7	13.5	3.9	4.3	9.1	6.9	12.4	3.4	5.6	10.9	17.8	2.5	6.2	79	99	15.3*	18.2*	14
$\begin{aligned} & \mathrm{JM} \\ & 10121 \end{aligned}$	AM	Cranial fragments and hindquarters only, found at Ghost Bat Roost														103^{*}	16.6*		
U946	AM	Squashed body and skull													90	84	$16.4{ }^{*}$	19.6*	12
U954	SAF														66^{*}	81*	15.5*	15.6*	
$\begin{aligned} & \mathrm{CM} \\ & 15587 \\ & \hline \end{aligned}$	JM	19.2	11.8	3.9	3.8	8.0	6.2								64	70	14.2	13.6	6
U943	JM														65	68*	14.7 ${ }^{\text {² }}$	13.8*	

ever vegetation at the Roper River Valley site was prodominantly Acacia thicket.

PHYLOGENETIC ANALYSIS

The distribution of character states for 79 characters (Table 2) among Antechinus godmani, Murexia longicaudata, Antechinomys laniger and 16 extant species of Sminthopsis is listed in Table 3. The phylogenetic analysis associated with this description was aimed primarily at evaluating the affinities of S. bind with the S. macroura group (S. macroura, S. butleri, S. virginiae, S. douglasi, S. hirtipes, Archer, 1981; to which S, archeri was more recently added, Van Dyck, 1986). However, it is possible to suggest some of the broader relationships within the genus, When A. godmani and M. Iongicaudata comprised the outgroup, this analysis produced a single, well-resolved cladogram of dunnart relationships with 351 steps and a consistency index of 0.41 (Fig. 5). If a hypothetical ancestor exhibiting the presumed pleisomorphic states for all 79 charactersis was included in the analysis, one tree (366 steps, ci 0.42) of identical topology was resolved.

These analyses resolved the 17 tested species into 4 clades: 1 , the broad S, crassicaudata clade comprised of sub-clades (a) S. crassicaudata, (b) Sooldea, (c) S. longicaudata and S. (Antechinomys) laniger. (d) S. hirilpes and S. youngsoni; 2, The S. psammophila clade containing S. psanmophila and S. granulipes; 3, The broad S. macroura clade comprised of sub-clades (a) S. griseoventer, (b) S. murina, (c) S. macroura, and (d) S. bindi, S. butleri, S. virginiae, S.
douglasi and S. archeri (all from tropical northem Australia); 4 , the S. leucopus clade containing S. leucopus alone. They supported the sister group relationships proposed by Archer (1981) for S. virginiae with S. douglasi and S. psammophila with S. granulipes. However, the analysis did not support a hypothesis of sister species relationship between S. hirtipes and S. butleri; S. crassicaudafa and S. laniger; or a close relationship between his S. longicaudata and the S.ooldect, S. murina, S. leucopus clade. While in the present analysis, resolution of Sminthopsis cladograms

TABLE 5. Climatic envelope (16 parameters) from locations of capture for Sminthopsis bindi.

	Mean	S.D.
Annual mean temperature ${ }^{\circ} \mathrm{C}$	27.0	0.4
Minimum temp. (coolest month) 'C	14.3	1.4
Maximum ternp. (warmest month) ${ }^{\text {c }} \mathrm{C}$	36.7	0.6
Annual temp. range ${ }^{\circ} \mathrm{C}$	22.3	1.9
Mean temp. (coolest quarter) ${ }^{\circ} \mathrm{C}$	23.3	0.9
Mean temp. (warmest quarter) ${ }^{\circ} \mathrm{C}$	29.8	0.3
Mean temp. (wettest quarter) ${ }^{\circ} \mathrm{C}$	28.5	0.3
Mean temp. (driest quarter) ${ }^{\circ} \mathrm{C}$	23.4	0.9
Annual mean precipitation mm	1240	163
Precipitation (wettest month) mm	282	32
Precipitation (driest month) mm	1	0
CV (monthly precipitation)	115	1.8
Precipitation (wettest quarter) mm	790	97
Precipitation (warmest quarter) mm	42 I	75
Precipitation (driest quarter) mm	6	1
Precipitation (coolest quarter) mm	8	4

varied with the selection of outgroup species, the relationships between the most external members of the S macroura clade (S. bindi, S.archeri, S. bulleri, S, virginiae and S douglasi) remained robust. The affinities of bindilie with this 'broadfaced' sub-clade of dunnarts of which it is the most plesiomorphic species and of which S. virginiae and S douglasi are the most derived.

ACKNOWLEDGEMENTS

We extend our thanks to Dick Braithwaite (CSIRO, Winnellie) for discussion; Nick Gambold and Karina Menkhorst for field assistance; Australian Nature Conservation Agency for fieldwork funding; Max King and Paul Horner (Northern 'Territory Museum), Darrell Kitchener (Western Australian Museum), Catherine Kemper and Lynette Queale (South Australian Museum), Linda Gibson (Australian Museum) and John Wombey (Australian National Wildlife Collection, CSIRO, Division of Wildlife Research, Canberra) for access to specimens in their care; Robert Raven (Queensland Museum) for adyice on the method of phylogenetic analysis; Bruce Cowell (Queensland Museum) for photographs; Ray Chatto and Martin Schulz for information on records beyond Kakadu; Martin Armstrong for additional information on one record and for photo of live animal; David Cooper, Nipper Brown, Sandy Barruwei and Peter Jatbula for information on Jawoyn names.

LITERATURE CITED

ARCHER, M. 1976a. The basicranial region of marsupicamivores (Marsupialia), inter-relationships of camivorous marsupials, and affinities of the insectivorous marsupial peramelids, Joumal of the Linnean Socicty of London 59:217-322.
1976b. The dasyurid dentition and its relationship to that of didelphids, thylacinids, borhyaenids (Marsupicamivora) and Peramelids (Peramelina:Marsupialia). Australian Joumal of Zoology, suppl. ser. 39:1-34.
1981. Results of the Archbold Expeditions, No. 104, Systematic revision of the marsupial dasyurid genus Sminthopsis Thomas. Bulletin of the American Museum of Natural History 168(2):61-224.
1982a. Review of the dasyurid (Marsupialia) fossil record, integration of data bearing on phylogenetic interpretation, and suprageneric classification. Pp. 397-443. In Archer, M. (ed.), 'Carnivorous marsupials'. Vol 2. (Royal Zoological Society of New South Wales: Sydney).

1982b. A review of miocenc thylacinids (Thylacinidac. Marsupialia), the phylogenetic position of the Thylacinidae and the problems of apriorisms in character analysis. Fp, 445-476. In Archer, M. (ed.), 'Camivomus marsupials'. Vol 2. (Royal Zoological Society of New South Wales; Sydney).
BRAITHWATTE R.W. (cd.) 1985. The Kakadu fauna survey: an ecological survey of Kakadu National Park. Report to Australian National Parks and Wildife Service. (CSIRO. Darwin).
BROOKFR, M,G. \& BRAITHWAITE, R.W. 1988, The Kakaxu fauna survey: description and evaluation of methodalogy for the census of vertebrates. Technical Memorandum No. 29. (CSIRO: Cantera).
FARRIS, J.S. 1988. Hennig86, version 1.5. (Computer program distributed by its author, 41 Admiral Street, Port Jefferson Station, NY 11776).
KIRSCH, J.A.W, \& ARCHER, M. 1982, Polythetic cladistics, or when parsimony's not enough: the relationships of carnivorous marsupials. Pp. 596-619. In Archer, M, (ed.), 'Camivorous marsupials', Vol 2, (Royal Zoological Society of New South Wales: Sydocy).
LUCKEIT W.P. 1993_An ontogenefic assessment ofdental homologies in therian mammals. Pp, 182-204, In Szalay, FS, Novacek, M.J, \& McKenna, M.C. (eds) "Marnmal phylogeny". (Springer-Verlag: New York)
MAHONEY, JA. \& RIDE, W D.L. 1988. Dasyuridac. Pp. 14-33. In Walion, D.W. (exce. ed.) 'Zoological catalogue of Austraha'. Vol 5. (Bureau of flora and fauna: Canbecrra)
NIX. H.A. \& SWITZER, M.A. 1991, 'Rainforest animals. Atlas of verebrates endemic to Australia's wet tropics: (Australian National Parks and Wildlife Service: Canberra).
RIDGWAY, R, 1912. 'Calor standards and color nomenclature' (The Author 'Washington),
VAN DYCK. S. 1985. Sminthopsis Leucopus (Marsupialia: Dasyuridae) in north Queensland rainforest. Australian Manurnalogy 8: 53-60.
1986. The Chesmut Dunnart Sminthopsis archeri (Marsupialia: Dasyuridae), a new species from the savannahs of Paprua New Guinea and Cape York Peninsula, Australia, Australian Mammalogy 9: 111-124.
WOINARSKL, LC.Z 1992. Habitat relationships for two poorly knownimammal species Pseudormys calabytand Sminthopsissp; from the wet-dry tropics of the Northem Tenitory Australian Mammalogy 15;47-54.
WOINARSKI, JC.Z. GAMBOLD, N. MENKHORST, K.\&BRAITHWAITE,R.W. 1989a. Wildlife survey of Stage III, Kakadu National Park. Preliminary report to the Australian National Parks and Wildife Service from CSIRO Wildlife and Ecology; Darwin. February 1989.
19896. Wildlife of Kakadu National Park Stage III. Final report to the Austratian National Parks and Wildife Service from CSIRO Wildife and Eoology: Darwin, Oclober 1989.

